# Airway Velocity "Rules of Thumb" More guidelines than hard and fast rules

**Presented by: K Manns – BBE Australasia** 





#### **Contents**

- 1. Introduction
- 2. Textbook optimization
- 3. Other issues to consider
- 4. Design vs. Operating considerations
- Problem statement
- 6. Case Study A
- 7. Case Study B
- 8. Case Study C
- 9. Case Study D
- 10. Conclusions





#### Introduction

 Economic velocities typically consider the cost of power, development costs and operational risk.







#### **Textbook optimisation**

The following financial and technical inputs were used for this analysis:

Raise boring cost \$9,647 per m depth

Project Life 15years

Discount rate 6%

• K Factor 0.004 Ns<sup>2</sup>/m<sup>4</sup>

• Fan efficiency 80%

Low Power cost \$0.11c per kW/hr

High Power cost \$0.32c per kW/hr





# **Textbook optimisation**







#### Other issues to consider

There are several issues that are not factored into this classic textbook optimisation.

- Project CAPEX constraints.
- Schedule constraints and the availability of raise boring resources.
- Geotechnical constraints.
- Mining depth and dip of ore body.
- Surface access.
- Environmental issues





#### Design vs. operating considerations

- Designing at higher airspeeds ≠ operating at high speeds for the LoM.
- Airflow demands vary as production demands change and so will the airspeed.





#### **Problem statement**

- Does the textbook theoretical economic assessment mean that designs at higher airspeeds are no longer acceptable or fatally flawed?
- A number of hypothetical example cases based on real projects the authors worked on is presented with the following underlying themes:
  - CAPEX and geotechnical constraints
  - Strategic considerations
  - Large project and schedule considerations
  - Opportunistic to defer CAPEX





#### Case Study A – Capex and Geotech constrained

- Airflow increase required from 725m³/s to 990m³/s
- More than 1.4km deep
- Geotechnically constrained below 1km all raises no more than 3.5m diameter
- CAPEX availability is limited

|          | <15m/s  |     |                     | 17m/s   |     |                     | 25m/s   |     |                     |
|----------|---------|-----|---------------------|---------|-----|---------------------|---------|-----|---------------------|
|          | 990m³/s |     |                     | 990m³/s |     |                     | 990m³/s |     |                     |
|          | Size    | No. | Airflow [per raise] | Size    | No. | Airflow [per raise] | Size    | No. | Airflow [per raise] |
| RAR      |         |     | 990m³/s             |         |     | 990m³/s             |         |     | 990m³/s             |
| Existing | 5.0m    | 2   | 270m³/s             | 5.0m    | 2   | 330m³/s             | 5.0m    | 2   | 495m³/s             |
| New      | 4.5m    | 2   | 225m³/s             | 5.0m    | 1   | 330m³/s             | 5.0m    | 0   |                     |
| FAR      |         |     | 725m³/s             |         |     | 725m³/s             |         |     | 725m³/s             |
| Existing | 5.0m    | 1   | 275m³/s             | 5.0m    | 2   | 242m³/s             | 5.0m    | 2   | 363m³/s             |
| New      | 4.5m    | 2   | 225m³/s             | 5.0m    | 1   | 242m³/s             | 5.0m    | 0   |                     |

Note: Balance of intake via hoisting shaft and decline





#### **Case Study B – Large project and schedule constraints**

- New Block Cave
- Remote location
- Difficult topography
- 2,800m³/s required
- High VRT
- Contaminants





#### **Case Study C – Opportunistic**

- New surface raise established designed at economic velocity of 15m/s
- Challenging ground conditions
- Expansion planned into new mining area





**Case Study D – Strategic** 





#### **CONCLUSIONS**



